Phys x update
Author: s | 2025-04-25
X-PHY Support - Get step-by-step instructions to set up and use X-PHY Endpoint Security products swiftly. Secure your data with ease using X-PHY solutions.
Free phys x update Download - phys x update for Windows
Appl. Phys. Lett. 99, 193104 (2011).Y. Xu, X.B. Chen, J.S. Wang, B.L. Gu, W.H. Duan, Phys. Rev. B 81, 195425 (2010).Z. Huang, T.S. Fisher, J.Y. Murthy, J. Appl. Phys. 108, 094319 (2010).J.W. Jiang, B.S. Wang, J.S. Wang, Appl. Phys. Lett. 98, 113114 (2011).N. Yang, X. Ni, J.-W. Jiang, B. Li, Appl. Phys. Lett. 100, 093107 (2012).D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to Applications (Academic Press, New York, ed. 2, 2002).F. Hao, D.N. Fang, Z.P. Xu, Appl. Phys. Lett. 99, 041901 (2011).A. Bagri, S.P. Kim, R.S. Ruoff, V.B. Shenoy, Nano Lett. 11, 3917 (2011).A. Cao, J. Qu, J. Appl. Phys. 111, 053529 (2012).X. Li, K. Maute, M.L. Dunn, R. Yang, Phys. Rev. B 81, 245318 (2010).N. Wei, L. Xu, H.-Q. Wang, J.-C. Zheng, Nanotechnology 22, 105705 (2011).S.-K. Chien, Y.-T. Yang, C.O.-K. Chen, Carbon 50, 421 (2012).H. Sevinçli, G. Cuniberti, Phys. Rev. B 81, 113401 (2010).N. Yang, G. Zhang, B.W. Li, Appl. Phys. Lett. 95, 033107 (2009).G. Zhang, H.S. Zhang, Nanoscale 3, 4604 (2011).Q.-X. Pei, Y.-W. Zhang, Z.-D. Sha, V.B. Shenoy, Appl. Phys. Lett. 100, 101901 (2012).J. Lee, V. Varshney, A.K. Roy, J.B. Ferguson, B.L. Farmer, Nano Lett. 12, 3491 (2012).L. Lindsay, D.A. Broido, Phys. Rev. B 81, 205441 (2010).A. Javey, J. Guo, M. Paulsson, Q. Wang, D. Mann, M. Lundstrom, H. Dai, Phys. Rev. Lett. 92, 106804 (2004).J.-Y. Park, S. Rosenblatt, Y. Yaish, V. Sazonova, H. Üstünel, S. Braig, T.A. Arias, P.W. Brouwer, P.L. McEuen, Nano Lett. 4, 517 (2004).M.S. Shur, IEEE Electron Device Lett. 23, 511 (2002).J. ANID under Grant AFB180001. D.A. acknowledges partial financial support from Fondecyt 1220215 and 1200867.Institutional Review Board StatementNot applicable.Informed Consent StatementNot applicable.Data Availability StatementAll data that support this study are included within the article and in the supplementary file.AcknowledgmentsV.L.C.-S. thanks CEDENNA and the Universidad de Santiago de Chile for hospitality.Conflicts of InterestAuthors declare that they have no competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.AbbreviationsThe following abbreviations are used in this manuscript: DMIDzyaloshinskii–Moriya InteractionSTNOSpin Torque Nano-OscillatorSTTSpin-Transfer TorqueLLGSLandau–Lifshitz–Gilbert–SlonczewskiJElectric Current DensityFFTFast Fourier TransformationSDState DiagramReferencesQi, X.-L.; Zhang, S.-C. The quantum spin Hall effect and topological insulators. Phys. Today 2010, 63, 33. [Google Scholar] [CrossRef] [Green Version]Hasan, M.Z.; Kane, C.L. Colloquium: Topological insulators. Rev. Mod. Phys. 2010, 82, 3045. [Google Scholar] [CrossRef] [Green Version]Qi, X.-L.; Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 2011, 83, 1057. [Google Scholar] [CrossRef] [Green Version]Ando, Y. Topological Insulator Materials. J. Phys. Soc. Jpn. 2013, 82, 102001. [Google Scholar] [CrossRef] [Green Version]Teixeira, A.W.; Carvalho-Santos, V.L.; Fonseca, J.M. Effective potential for emergent Majorana fermions in superconductor systems. Phys. Lett. A 2020, 384, 126182. [Google Scholar] [CrossRef] [Green Version]Rajaraman, R. Solitons and Instantons; North-Holland: Amsterdam, The Netherland, 1984. [Google Scholar]Leonov, A.O.; Kézsmárki, I. Asymmetric isolated skyrmions in polar magnets with easy-plane anisotropy. Phys. Rev. B 2017, 96, 014423. [Google Scholar] [CrossRef] [Green Version]Moon, K.-W.; Yoon, J.; Kim, C.; Hwang, C. Existence of in-Plane Magnetic Skyrmion and its Motion under Current Flow. Phys. Rev. Appl. 2019, 12, 064054. [Google Scholar] [CrossRef] [Green Version]Zhang, X.; Xia, J.; Shen, L.; Ezawa, M.; Tretiakov, O.A.; Zhao, G.; Liu, X.; Zhou, Y. Static and dynamic properties of bimerons in a frustrated ferromagnetic monolayer. Phys. Rev. B 2020, 101, 144435. [Google Scholar] [CrossRef]Araújo, A.S.; Lopes, R.J.C.; Carvalho-Santos, V.L.; Pereira, A.R.; Silva, R.L.; Silva, R.C.; Altbir, D. Typical skyrmions versus bimerons: A long-distance competition in ferromagnetic racetracks. Phys. Rev. B 2020, 102, 104409. [Google Scholar] [CrossRef]Bogdanov, A.; Hubert, A. Thermodynamically stable magnetic vortex states in magnetic crystals. J. Magn. Magn. Mater. 1994, 138, 255–269. [Google Scholar] [CrossRef]Kézsmarki, I.; Bordács, S.; Milde, P.; Neuber, E.; Eng, L.M.; White, J.S.;X-PHY Support - X-PHY
A.: Quantum protocols for anonymous voting and surveying. Phys. Rev. A 75(1), 012333 (2007)Article ADS Google Scholar Bonanome, M., Buzek, V., Hillery, M., Ziman, M.: Toward protocols for quantum-ensured privacy and secure voting. Phys. Rev. A 84(2), 290–296 (2011)Article Google Scholar Horoshko, D., Kilin, S.: Quantum anonymous voting with anonymity check. Phys. Lett. A 375, 1172–1175 (2011)Article ADS MathSciNet Google Scholar Niu, X.F., Zhang, J.Z., Xie, S.C., Chen, B.Q.: An improved quantum voting scheme. Int. J. Theor. Phys. 57, 3200–3206 (2018)Article Google Scholar Wang, S.L., Zhang, S., Wang, Q., Shi, R.H.: Fault-tolerant quantum anonymous voting protocol. Int. J. Theor. Phys. 58, 1008–1016 (2019)Article Google Scholar Zhang, X., Zhang, J.Z., Xie, S.C.: A secure quantum voting scheme based on quantum group blind signature. Int. J. Theor. Phys. 59, 719–729 (2020)Article ADS MathSciNet Google Scholar Zhou, B.M., Zhang, K.J., Zhang, X., Wang, Q.L.: The cryptanalysis and improvement of a particular quantum voting model. Int. J. Theor. Phys. 59, 1109–1120 (2020)Article MathSciNet Google Scholar Xu, Y.Z., Huang, Y.F., Lu, W., Li, L.Z.: A Quantum Electronic Voting Scheme with d-Level Single Particles. In: Intelligent Computing Methodologies. ICIC. Lecture Notes in Computer Science. pp. 710–715 (2018)Jiang, D.H., Wang, J., Liang, X.Q., Xu, G.B., Qi, H.F.: Quantum voting scheme based on locally indistinguishable orthogonal product states. Int. J. Theor. Phys. 59, 436–444 (2020)Article MathSciNet Google Scholar Lin, S., Guo, G.D., Huang, F., Liu, X.F.: Quantum anonymous ranking based on the Chinese remainder theorem. Phys. Rev. A. 93(1), 012318 (2016)Article ADS Google Scholar Long, G.L., Liu, X.S.:. X-PHY Support - Get step-by-step instructions to set up and use X-PHY Endpoint Security products swiftly. Secure your data with ease using X-PHY solutions.Phys X update? - Silverfall - GameFAQs
ReferencesH.O. Pierson, Handbook of Carbon, Graphite, Diamond and Fullerenes: Properties, Processing and Applications (Noyes Publications, Park Ridge, NJ, 1993). Google Scholar M.C. Schabel, J.L. Martins, Phys. Rev. B 46, 7185 (1992).D.W. Bullett, J. Phys. C: Solid State Phys. 8, 2707 (1975).R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (World Scientific, Singapore, 1998).M. Mohr, J. Maultzsch, E. Dobardži ć, S. Reich, I. Miloševi ć, M. Damnjanovi ć, A. Bosak, M. Krisch, C. Thomsen, Phys. Rev. B 76, 035439 (2007).C. Oshima, T. Aizawa, R. Souda, Y. Ishizawa, Y. Sumiyoshi, Solid State Commun. 65, 1601 (1988).L. Wirtz, A. Rubio, Solid State Commun. 131, 141 (2004).N. Mingo, D.A. Broido, Phys. Rev. Lett. 95, 096105 (2005).D.L. Nika, E.P. Pokatilov, A.S. Askerov, A.A. Balandin, Phys. Rev. B 79, 155413 (2009).V.N. Popov, Phys. Rev. B 66, 153408 (2002).E. Muñoz, J. Lu, B.I. Yakobson, Nano Lett. 10, 1652 (2010).E. Pop, Nano Res. 3, 147 (2010).Z.-Y. Ong, E. Pop, J. Appl. Phys. 108, 103502 (2010).Z.-Y. Ong, E. Pop, J. Shiomi, Phys. Rev. B 84, 165418 (2011).K. Kang, D. Abdula, D.G. Cahill, M. Shim, Phys. Rev. B 81, 165405 (2010).B. Qiu, X. Ruan, Appl. Phys. Lett. 100, 193101 (2012).T. Tohei, A. Kuwabara, F. Oba, I. Tanaka, Phys. Rev. B 73, 064304 (2006).R. Nicklow, N. Wakabayashi, H.G. Smith, Phys. Rev. B 5, 4951 (1972).T. Nihira, T. Iwata, Phys. Rev. B 68, 134305 (2003).L.X. Benedict, S.G. Louie, M.L. Cohen, Solid State Commun. 100, 177 (1996).J. Hone, Top. Appl. Phys. 80, 273 (2001).L.E. Fried, W.M. Howard, Phys. Rev. B 61, Surface magnetic disorder. Phys Rev Appl. 2019;12:054001.Article ADS CAS Google Scholar Liu Y, Liu Y, Tang Z, Jiang H, Wang Z, Ablimit A, Jiao W, Tao Q, Feng C, Xu Z, Cao G. Superconductivity and ferromagnetism in hole-doped RbEuFe\(_4\)As\(_4\). Phys Rev B. 2016;93:214503.Article ADS Google Scholar Seah MP, Dench WA. Quantitative electron spectroscopy of surfaces: a standard data base for electron inelastic mean free paths in solids. Surf Interface Anal. 1979;1:2.Article CAS Google Scholar Schubert WK, Shelton RN, Wolf EL. Electron-energy-loss- and ultraviolet-photoemission-spectroscopy study of the \({\rm VN }_{x}\) system. Phys Rev B. 1981;23:5097.Article ADS CAS Google Scholar Glaser A, Surnev S, Ramsey MG, Lazar P, Redinger J, Podloucky R, Netzer FP. The growth of epitaxial VN(1 1 1) nanolayer surfaces. Surf Sci. 2007;601:4817.Article ADS CAS Google Scholar Ren G, Zhang N, Zhang X, Zhang H, Yu P, Zheng S, Zhou D, Tian Z, Liu X. Photon-in/photon-out endstation for studies of energy materials at beamline 02B02 of Shanghai synchrotron radiation facility. Chin Phys B. 2020;29:016101.Article ADS CAS Google Scholar Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865.Article ADS PubMed CAS Google Scholar Blöchl PE. Projector augmented-wave method. Phys Rev B. 1994;50:17953.Article ADS Google Scholar Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, PaoliniFree nvidia phys x Download - nvidia phys x 9.19
Z. Chen, W. Bao, C.N. Lau, C. Dames, Nano Lett. 10, 3909 (2010).K. Saito, J. Nakamura, A. Natori, Phys. Rev. B 76, 115409 (2007).M.T. Pettes, I. Jo, Z. Yao, L. Shi, Nano Lett. 11, 1195 (2011).R. Berman, Phys. Rev. B 45, 5726 (1992).Z. Chen, W. Jang, W. Bao, C.N. Lau, C. Dames, Appl. Phys. Lett. 95, 161910 (2009).Y.K. Koh, M.-H. Bae, D.G. Cahill, E. Pop, Nano Lett. 10, 4363 (2010).K.F. Mak, C.H. Lui, T.F. Heinz, Appl. Phys. Lett. 97, 221904 (2010).L. Lindsay, D.A. Broido, N. Mingo, Phys. Rev. B 82, 115427 (2010).J. Haskins, A. Kınacı, C. Sevik, H.l. Sevinçli, G. Cuniberti, T. Ça g˘ ın, ACS Nano 5, 3779 (2011).Z. Aksamija, I. Knezevic, Appl. Phys. Lett. 98, 141919 (2011).W. Liu, M. Asheghi, J. Appl. Phys. 98, 123523 (2005).R. Chen, A.I. Hochbaum, P. Murphy, J. Moore, P. Yang, A. Majumdar, Phys. Rev. Lett. 101, 105501 (2008).W. Steinhögl, G. Schindler, G. Steinlesberger, M. Traving, M. Engelhardt, J. Appl. Phys. 97, 023706 (2005).P.G. Klemens, D.F. Pedraza, Carbon 32, 735 (1994).J.N. Hu, X.L. Ruan, Y.P. Chen, Nano Lett. 9, 2730 (2009).W.J. Evans, L. Hu, P. Keblinski, Appl. Phys. Lett. 96, 203112 (2010).H.J. Zhang, G. Lee, A.F. Fonseca, T.L. Borders, K. Cho, J. Nanomater. 2010, 537657 (2010).J.N. Hu, S. Schiffli, A. Vallabhaneni, X.L. Ruan, Y.P. Chen, Appl. Phys. Lett. 97, 133107 (2010).B. Mortazavi, A. Rajabpour, S. Ahzi, Y. Remond, S.M.V. Allaei, Solid State Commun. 152, 261 (2012).H.J. Zhang, G. Lee, K. Cho, Phys. Rev. B 84, 115460 (2011).W.-R. Zhong, W.-H. Huang, X.-R. Deng, B.-Q. Ai,New Phys X, Tweak tool.
Sci. Lett. 183,487 (2000); A. Kirak, H. Yilmaz, S. Guler, C. Guler, J. Phys. D: Appl Phys. 32,1919 (1999).Article CAS Google Scholar Applied Sciences Inc. Home Page, H.Y. Ng, X. Lu, S.K. Lau, Pahjm. Campos. 26, 66 (2005); C Yu et aL, Trans. ASME128,234 (2006); J. Zeng et al., Composites Part B 35, 245 (2004); T. Morita, H. Inoue, Y. Siihara, U.S. Patent 6,565,971 (May 20, 2003).Article CAS Google Scholar J. Zeng et al., Composites Part B 35, 245 (2004); NanoLab Home Page, M.-K. Yeh, N.-H. Tai, J.-H. Liu, Carbon 44,1 (2006); M. Fujii et al., Phys. Rei>. Lett. 95,065502 (2005); T.W. Ebbesen et al., Nature 382,54 (1996).Article CAS Google Scholar E. Bichoutskaia, M.I. Heggie, A.M. Popov, YE. Lozovik, Phys. Rev. B 73, 045435 (2006); S. Berber, Y.-K. Kwon, D. Tomanek, Phys. Rev. Lett. 84, 4613 (2000); U. Dettlaff-Weglikowska et al., J. Am. Chem. Soc. 127, 5125 (2005).Article CAS Google Scholar H.S. Jeona, J.K. Rameshwarama, G. Kimb, D.H. Weinkauf, Polymer 44, 5749 (2003); Y.-R Wu, Q.-X. Jia, D.-S. Yu, L.-Q. Zhang, Palym. Test. 23,903 (2004); V.V. Murashov, J. Phys.: Condens. Matter. 11, 1261 (1999); T.J. Pinnavaia, G.W. Beall, Polymer-Clay Nanocomposites, Wiley Series in Polymer Science (Wiley, New York, 2001).Article CAS Google Scholar S. Amarchand, T.R. Rama Mohan, P. Ramakrishnan, Adv. Powder Technol. 11, 415 (2000); R.J. Fleming et aL, IEEE Trans. Dielectrics and Electrical Insulation 12, 745 (2005); The A to Z of Materials Home Page, CAS Google Scholar High Precision Machining of Hard Materi¬als, Insaco Inc. Home Page, references. X-PHY Support - Get step-by-step instructions to set up and use X-PHY Endpoint Security products swiftly. Secure your data with ease using X-PHY solutions.Phys X System Software - Archive.org
Transport in azulene molecular junction: effect of electrode material on electrical rectification behavior. J Comput Electron 17(2):580–585. CAS Google Scholar Parashar S, Srivastava P, Pattanaik M (2013) “Electrode materials for biphenyl-based rectification devices. J Mole Model 19(10):4467–4475. CAS Google Scholar Parashar S, Srivastava P, Pattanaik M, Jain SK (2014) Electron transport in asymmetric biphenyl molecular junctions: effects of conformation and molecule-electrode distance. Eur Phys J Plus B 87(9):220. S, Srivastava P (2016) A novel reverse rectifying effects and negative differential resistance in asymmetric X-biphenyl-X (X=Pt, Pd, Pb) molecular junctions. Solid State Commun 231–232:10–13. Google Scholar Meng FX, Ming C, Zhuang J, Ning XJ (2013) Dependence of electronic rectification in carbon nanocone devices upon electrode materials. J Phys D Appl Phys 46(5):055309. G, Sawhney RS (2021) Molecular electronics behaviour of L-aspartic acid using symmetrical metal electrodes. J Mol Model 27(11):335. G, Sawhney RS (2020) First principle approach to elucidate transport properties through l-glutamic acid-based molecular devices using symmetrical electrodes. J Mol Model 26:1–11. GM et al (2019) Effect of the chemical potentials of electrodes on charge transport across molecular junctions. J Phys Chem C 123(36):22009–22017. CAS Google Scholar Xie Z, Bâldea I, Frisbie CD (2019) Determination of energy-level alignment in molecular tunnel junctions by transport and spectroscopy: self-consistency for the case of oligophenylene thiols and dithiols on Ag, Au, and Pt Electrodes. J Am Chem Soc 141(8):3670–3681. CAS PubMed Google Scholar Wang K, Xu B (2017) Modulation and control of charge transport through single-molecule junctions. Top Curr Chem 375(1):1–43. CAS Google Scholar Kiguchi M, Miura S, Takahashi T, Hara K, Sawamura M, Murakoshi K (2008) Conductance of single 1,4-benzenediamine molecule bridging between Au and Pt electrodes. J Phys Chem C 112(35):13349–13352. CAS Google Scholar Silva CE, Pontes RB (2020) Structural, electronic and transport properties of a single 1,4-benzenediamine molecule attached to metal contacts of Au, Ag and Cu. Comput Mater Sci 171:109212. CAS Google Scholar M. Kaur, R. S. Sawhney, and D. Engles (2018) Negative differential resistance observation in complex convoluted fullerene junctions. J Appl Phys, 123(16):161511. B, Bratkovsky AM (2003) Current rectification by simple molecular quantum dots: an ab initio study. Phys Rev B Condens Matter Mater Phys. Google Scholar Zhou YH, Zheng XH, Xu Y, Zeng ZY (2006) Current rectification by asymmetric molecules: an ab initio study. J Chem Phys 125(24):244701. CAS PubMed Google Scholar Welker ME (2018) Ferrocenes as building blocks in molecular rectifiers and diodes. Molecules 23(7):1551. PubMed PubMed Central Google Scholar Sikri G, Singh Sawhney R, Rajni (2022) L-Aspartic acid based molecular rectifier using dissimilar electrodes. Mater Today Proc 71(2):408–413. GR, Hamoudi H (2021) Effect of anchoring groups on the electronic transport properties of biphenyl and phenyl-pyridine molecules. J Market Res 12:193–201. CAS Google Scholar KokabiComments
Appl. Phys. Lett. 99, 193104 (2011).Y. Xu, X.B. Chen, J.S. Wang, B.L. Gu, W.H. Duan, Phys. Rev. B 81, 195425 (2010).Z. Huang, T.S. Fisher, J.Y. Murthy, J. Appl. Phys. 108, 094319 (2010).J.W. Jiang, B.S. Wang, J.S. Wang, Appl. Phys. Lett. 98, 113114 (2011).N. Yang, X. Ni, J.-W. Jiang, B. Li, Appl. Phys. Lett. 100, 093107 (2012).D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to Applications (Academic Press, New York, ed. 2, 2002).F. Hao, D.N. Fang, Z.P. Xu, Appl. Phys. Lett. 99, 041901 (2011).A. Bagri, S.P. Kim, R.S. Ruoff, V.B. Shenoy, Nano Lett. 11, 3917 (2011).A. Cao, J. Qu, J. Appl. Phys. 111, 053529 (2012).X. Li, K. Maute, M.L. Dunn, R. Yang, Phys. Rev. B 81, 245318 (2010).N. Wei, L. Xu, H.-Q. Wang, J.-C. Zheng, Nanotechnology 22, 105705 (2011).S.-K. Chien, Y.-T. Yang, C.O.-K. Chen, Carbon 50, 421 (2012).H. Sevinçli, G. Cuniberti, Phys. Rev. B 81, 113401 (2010).N. Yang, G. Zhang, B.W. Li, Appl. Phys. Lett. 95, 033107 (2009).G. Zhang, H.S. Zhang, Nanoscale 3, 4604 (2011).Q.-X. Pei, Y.-W. Zhang, Z.-D. Sha, V.B. Shenoy, Appl. Phys. Lett. 100, 101901 (2012).J. Lee, V. Varshney, A.K. Roy, J.B. Ferguson, B.L. Farmer, Nano Lett. 12, 3491 (2012).L. Lindsay, D.A. Broido, Phys. Rev. B 81, 205441 (2010).A. Javey, J. Guo, M. Paulsson, Q. Wang, D. Mann, M. Lundstrom, H. Dai, Phys. Rev. Lett. 92, 106804 (2004).J.-Y. Park, S. Rosenblatt, Y. Yaish, V. Sazonova, H. Üstünel, S. Braig, T.A. Arias, P.W. Brouwer, P.L. McEuen, Nano Lett. 4, 517 (2004).M.S. Shur, IEEE Electron Device Lett. 23, 511 (2002).J.
2025-04-02ANID under Grant AFB180001. D.A. acknowledges partial financial support from Fondecyt 1220215 and 1200867.Institutional Review Board StatementNot applicable.Informed Consent StatementNot applicable.Data Availability StatementAll data that support this study are included within the article and in the supplementary file.AcknowledgmentsV.L.C.-S. thanks CEDENNA and the Universidad de Santiago de Chile for hospitality.Conflicts of InterestAuthors declare that they have no competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.AbbreviationsThe following abbreviations are used in this manuscript: DMIDzyaloshinskii–Moriya InteractionSTNOSpin Torque Nano-OscillatorSTTSpin-Transfer TorqueLLGSLandau–Lifshitz–Gilbert–SlonczewskiJElectric Current DensityFFTFast Fourier TransformationSDState DiagramReferencesQi, X.-L.; Zhang, S.-C. The quantum spin Hall effect and topological insulators. Phys. Today 2010, 63, 33. [Google Scholar] [CrossRef] [Green Version]Hasan, M.Z.; Kane, C.L. Colloquium: Topological insulators. Rev. Mod. Phys. 2010, 82, 3045. [Google Scholar] [CrossRef] [Green Version]Qi, X.-L.; Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 2011, 83, 1057. [Google Scholar] [CrossRef] [Green Version]Ando, Y. Topological Insulator Materials. J. Phys. Soc. Jpn. 2013, 82, 102001. [Google Scholar] [CrossRef] [Green Version]Teixeira, A.W.; Carvalho-Santos, V.L.; Fonseca, J.M. Effective potential for emergent Majorana fermions in superconductor systems. Phys. Lett. A 2020, 384, 126182. [Google Scholar] [CrossRef] [Green Version]Rajaraman, R. Solitons and Instantons; North-Holland: Amsterdam, The Netherland, 1984. [Google Scholar]Leonov, A.O.; Kézsmárki, I. Asymmetric isolated skyrmions in polar magnets with easy-plane anisotropy. Phys. Rev. B 2017, 96, 014423. [Google Scholar] [CrossRef] [Green Version]Moon, K.-W.; Yoon, J.; Kim, C.; Hwang, C. Existence of in-Plane Magnetic Skyrmion and its Motion under Current Flow. Phys. Rev. Appl. 2019, 12, 064054. [Google Scholar] [CrossRef] [Green Version]Zhang, X.; Xia, J.; Shen, L.; Ezawa, M.; Tretiakov, O.A.; Zhao, G.; Liu, X.; Zhou, Y. Static and dynamic properties of bimerons in a frustrated ferromagnetic monolayer. Phys. Rev. B 2020, 101, 144435. [Google Scholar] [CrossRef]Araújo, A.S.; Lopes, R.J.C.; Carvalho-Santos, V.L.; Pereira, A.R.; Silva, R.L.; Silva, R.C.; Altbir, D. Typical skyrmions versus bimerons: A long-distance competition in ferromagnetic racetracks. Phys. Rev. B 2020, 102, 104409. [Google Scholar] [CrossRef]Bogdanov, A.; Hubert, A. Thermodynamically stable magnetic vortex states in magnetic crystals. J. Magn. Magn. Mater. 1994, 138, 255–269. [Google Scholar] [CrossRef]Kézsmarki, I.; Bordács, S.; Milde, P.; Neuber, E.; Eng, L.M.; White, J.S.;
2025-04-18A.: Quantum protocols for anonymous voting and surveying. Phys. Rev. A 75(1), 012333 (2007)Article ADS Google Scholar Bonanome, M., Buzek, V., Hillery, M., Ziman, M.: Toward protocols for quantum-ensured privacy and secure voting. Phys. Rev. A 84(2), 290–296 (2011)Article Google Scholar Horoshko, D., Kilin, S.: Quantum anonymous voting with anonymity check. Phys. Lett. A 375, 1172–1175 (2011)Article ADS MathSciNet Google Scholar Niu, X.F., Zhang, J.Z., Xie, S.C., Chen, B.Q.: An improved quantum voting scheme. Int. J. Theor. Phys. 57, 3200–3206 (2018)Article Google Scholar Wang, S.L., Zhang, S., Wang, Q., Shi, R.H.: Fault-tolerant quantum anonymous voting protocol. Int. J. Theor. Phys. 58, 1008–1016 (2019)Article Google Scholar Zhang, X., Zhang, J.Z., Xie, S.C.: A secure quantum voting scheme based on quantum group blind signature. Int. J. Theor. Phys. 59, 719–729 (2020)Article ADS MathSciNet Google Scholar Zhou, B.M., Zhang, K.J., Zhang, X., Wang, Q.L.: The cryptanalysis and improvement of a particular quantum voting model. Int. J. Theor. Phys. 59, 1109–1120 (2020)Article MathSciNet Google Scholar Xu, Y.Z., Huang, Y.F., Lu, W., Li, L.Z.: A Quantum Electronic Voting Scheme with d-Level Single Particles. In: Intelligent Computing Methodologies. ICIC. Lecture Notes in Computer Science. pp. 710–715 (2018)Jiang, D.H., Wang, J., Liang, X.Q., Xu, G.B., Qi, H.F.: Quantum voting scheme based on locally indistinguishable orthogonal product states. Int. J. Theor. Phys. 59, 436–444 (2020)Article MathSciNet Google Scholar Lin, S., Guo, G.D., Huang, F., Liu, X.F.: Quantum anonymous ranking based on the Chinese remainder theorem. Phys. Rev. A. 93(1), 012318 (2016)Article ADS Google Scholar Long, G.L., Liu, X.S.:
2025-04-15ReferencesH.O. Pierson, Handbook of Carbon, Graphite, Diamond and Fullerenes: Properties, Processing and Applications (Noyes Publications, Park Ridge, NJ, 1993). Google Scholar M.C. Schabel, J.L. Martins, Phys. Rev. B 46, 7185 (1992).D.W. Bullett, J. Phys. C: Solid State Phys. 8, 2707 (1975).R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (World Scientific, Singapore, 1998).M. Mohr, J. Maultzsch, E. Dobardži ć, S. Reich, I. Miloševi ć, M. Damnjanovi ć, A. Bosak, M. Krisch, C. Thomsen, Phys. Rev. B 76, 035439 (2007).C. Oshima, T. Aizawa, R. Souda, Y. Ishizawa, Y. Sumiyoshi, Solid State Commun. 65, 1601 (1988).L. Wirtz, A. Rubio, Solid State Commun. 131, 141 (2004).N. Mingo, D.A. Broido, Phys. Rev. Lett. 95, 096105 (2005).D.L. Nika, E.P. Pokatilov, A.S. Askerov, A.A. Balandin, Phys. Rev. B 79, 155413 (2009).V.N. Popov, Phys. Rev. B 66, 153408 (2002).E. Muñoz, J. Lu, B.I. Yakobson, Nano Lett. 10, 1652 (2010).E. Pop, Nano Res. 3, 147 (2010).Z.-Y. Ong, E. Pop, J. Appl. Phys. 108, 103502 (2010).Z.-Y. Ong, E. Pop, J. Shiomi, Phys. Rev. B 84, 165418 (2011).K. Kang, D. Abdula, D.G. Cahill, M. Shim, Phys. Rev. B 81, 165405 (2010).B. Qiu, X. Ruan, Appl. Phys. Lett. 100, 193101 (2012).T. Tohei, A. Kuwabara, F. Oba, I. Tanaka, Phys. Rev. B 73, 064304 (2006).R. Nicklow, N. Wakabayashi, H.G. Smith, Phys. Rev. B 5, 4951 (1972).T. Nihira, T. Iwata, Phys. Rev. B 68, 134305 (2003).L.X. Benedict, S.G. Louie, M.L. Cohen, Solid State Commun. 100, 177 (1996).J. Hone, Top. Appl. Phys. 80, 273 (2001).L.E. Fried, W.M. Howard, Phys. Rev. B 61,
2025-04-05Surface magnetic disorder. Phys Rev Appl. 2019;12:054001.Article ADS CAS Google Scholar Liu Y, Liu Y, Tang Z, Jiang H, Wang Z, Ablimit A, Jiao W, Tao Q, Feng C, Xu Z, Cao G. Superconductivity and ferromagnetism in hole-doped RbEuFe\(_4\)As\(_4\). Phys Rev B. 2016;93:214503.Article ADS Google Scholar Seah MP, Dench WA. Quantitative electron spectroscopy of surfaces: a standard data base for electron inelastic mean free paths in solids. Surf Interface Anal. 1979;1:2.Article CAS Google Scholar Schubert WK, Shelton RN, Wolf EL. Electron-energy-loss- and ultraviolet-photoemission-spectroscopy study of the \({\rm VN }_{x}\) system. Phys Rev B. 1981;23:5097.Article ADS CAS Google Scholar Glaser A, Surnev S, Ramsey MG, Lazar P, Redinger J, Podloucky R, Netzer FP. The growth of epitaxial VN(1 1 1) nanolayer surfaces. Surf Sci. 2007;601:4817.Article ADS CAS Google Scholar Ren G, Zhang N, Zhang X, Zhang H, Yu P, Zheng S, Zhou D, Tian Z, Liu X. Photon-in/photon-out endstation for studies of energy materials at beamline 02B02 of Shanghai synchrotron radiation facility. Chin Phys B. 2020;29:016101.Article ADS CAS Google Scholar Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865.Article ADS PubMed CAS Google Scholar Blöchl PE. Projector augmented-wave method. Phys Rev B. 1994;50:17953.Article ADS Google Scholar Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini
2025-03-26